Resources
QGIS Tools
RoGI QGIS Template
A QGIS template to be used in the creation of your own inventory that follows the guidelines.
RoGI Exercise in the Goms Valley, Switzerland
A QGIS-based exercise that is rated an easy level, containing mostly mono-unit rock glacier systems.
Last Updated: 28 March 2023
RoGI Dirru-Steintälli Exercise in the Matter Valley, Switzerland
A QGIS-based exercise that is rated at a more difficult level, containing rock glacier systems.
Last Updated: 27 June 2023
Baseline Concepts and Guidelines
Guidelines for Inventorying Rock Glaciers (RoGI)
Relevant Publications
The following publication list highlights publications since the start of RGIK (2018), focusing on research on rock glacier inventories and kinematics. This list is meant to provide some background references to our activities. We are aware it is not exhaustive. Please contact us if you believe important contributions are missing from this list at info@rgik.org.
2025
Hu, Y., Arenson, L. U., Barboux, C., Bodin, X., Cicoira, A., Delaloye, R., Gärtner-Roer, I., Kääb, A., Kellerer-Pirklbauer, A., Lambiel, C., Liu, L., Pellet, C., Rouyet, L., Schoeneich, P., Seier, G., Strozzi, T.: Rock glacier velocity: An essential climate variable quantity for permafrost. Reviews of Geophysics, 63, e2024RG000847, 2025. https://doi.org/10.1029/2024RG000847.
Onaca, A., Sirbu, F., Poncos, V., Hilbich, C., Strozzi, T., Urdea, P., Popescu, R., Berzescu, O., Etzelmüller, B., Vespremeanu-Stroe, A., Vasile, M., Teleagă, D., Birtaș, D., Lopătiță, I., Filhol, S., Hegyi, A., and Ardelean, F.: Slow-moving rock glaciers in marginal periglacial environment of Southern Carpathians, EGUsphere [preprint], 2025. https://doi.org/10.5194/egusphere-2024-3262.
Rouyet, L., Bolch, T., Brardinoni, F., Caduff, R., Cusicanqui, D., Darrow, M., Delaloye, R., Echelard, T., Lambiel, C., Ruiz, L., Schmid, L., Sirbu, F., and Strozzi, T.: Rock Glacier Inventories (RoGI) in 12 areas worldwide using a multi-operator consensus-based procedure, Earth Syst. Sci. Data Discuss. [preprint], in review, 2025. https://doi.org/10.5194/essd-2024-598.
2024
Cusicanqui, D., Lacroix, P., Bodin, X., Robson, B. A., Kääb, A., and MacDonell, S.: Detection and reconstruction of rock glaciers kinematic over 24 years (2000–2024) from Landsat imagery, EGUsphere [preprint], 2024, https://doi.org/10.5194/egusphere-2024-2393.
Kääb, A., & Røste, J. (2024). Rock glaciers across the United States predominantly accelerate coincident with rise in air temperatures. Nature Communications, 15(1), 7581. https://doi.org/10.1038/s41467-024-52093-z
Kellerer-Pirklbauer, A., Bodin, X., Delaloye, R., Lambiel, C., Gärtner-Roer, I., Bonnefoy-Demongeot, M., … & Zumiani, M. (2024). Acceleration and interannual variability of creep rates in mountain permafrost landforms (rock glacier velocities) in the European Alps in 1995–2022. Environmental Research Letters, 19(3), 034022. https://doi.org/10.1088/1748-9326/ad25a4
Sun, Z., Hu, Y., Racoviteanu, A., Liu, L., Harrison, S., Wang, X., Cai, J., Guo, X., He, Y. and Yuan, H.: TPRoGI: a comprehensive rock glacier inventory for the Tibetan Plateau using deep learning. Earth System Science Data, 16(12), 5703-5721, 2024, https://doi.org/10.5194/essd-16-5703-2024
2023
Bertone, A., Jones, N., Mair, V., Scotti, R., Strozzi, T., and Brardinoni, F.: A climate-driven, altitudinal transition in rock glacier dynamics detected through integration of geomorphological mapping and synthetic aperture radar interferometry (InSAR)-based kinematics, The Cryosphere, 18, 2335–2356, 2024, https://doi.org/10.5194/tc-18-2335-2024
Hu, Y., Harrison, S., Liu, L., & Wood, J. L. (2023). Modelling rock glacier ice content based on InSAR-derived velocity, Khumbu and Lhotse valleys, Nepal. The Cryosphere, 17(6), 2305–2321. https://doi.org/10.5194/tc-17-2305-2023
Hu, Y., Liu, L., Huang, L., Zhao, L., Wu, T., Wang, X., & Cai, J. (2023). Mapping and Characterizing Rock Glaciers in the Arid Western Kunlun Mountains Supported by InSAR and Deep Learning. Journal of Geophysical Research: Earth Surface, 128(9). https://doi.org/10.1029/2023jf007206
Lambiel, C., Strozzi, T., Paillex, N., Vivero, S. and Jones, N.: Inventory and kinematics of active and transitional rock glaciers in the Southern Alps of New Zealand from Sentinel-1 InSAR, Arctic, Antarctic, and Alpine Research, 55:1, 2183999, 2023. https://doi.org/10.1080/15230430.2023.2183999.
Pellet, C., Bodin, X., Cusicanqui, D., Delaloye, R., Kääb, A., Kaufmann, V., Thibert E., Vivero, S. and Kellerer-Pirklbauer, A.: Rock Glacier Velocity. In Bull. Amer. Soc. Vol. 105(8), State of the Climate in 2023, 44–45, 2023, https://doi.org/10.1175/2024BAMSStateoftheClimate.1.
2022
Bertone, A., Barboux, C., Bodin, X., Bolch, T., Brardinoni, F., Caduff, R., … & Strozzi, T. (2022). Incorporating InSAR kinematics into rock glacier inventories: insights from 11 regions worldwide. The Cryosphere, 16(7), 2769-2792. https://doi.org/10.5194/tc-16-2769-2022
Lilleøren, K. S., Etzelmüller, B., Rouyet, L., Eiken, T., Slinde, G., & Hilbich, C. (2022). Transitional rock glaciers at sea level in northern Norway. Earth Surface Dynamics, 10(5), 975-996. https://doi.org/10.5194/esurf-10-975-2022
Pellet, C., Bodin, X., Cusicanqui, D., Delaloye, R., Kääb, A., Kaufmann, V., Noetzli, J., Thibert, E., and Kellerer-Pirklbauer, A.: Rock Glacier Velocity. In Bull. Amer. Soc. Vol. 103(8), State of the Climate in 2021, 43-45, 2022, https://doi.org/10.1175/2022BAMSStateoftheClimate.1.
2021
Kääb, A., Strozzi, T., Bolch, T., Caduff, R., Trefall, H., Stoffel, M., and Kokarev, A.: Inventory, motion and acceleration of rock glaciers in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s, The Cryosphere, 15, 927–949, 2021, https://doi.org/10.5194/tc-15-927-2021.
Rouyet, L., Lilleøren, K.S., Böhme, M., Vick, L.M., Delaloye, R., Etzelmüller, B., Lauknes, T.R., Larsen, Y., and Blikra, L.H.: Regional Morpho-Kinematic Inventory of Slope Movements in Northern Norway, Front. Earth Sci. 9:6810881, 2021, https://doi.org/10.3389/feart.2021.681088.
2020
Robson, B. A., Bolch, T., MacDonell, S., Hölbling, D., Rastner, P., and Schaffer, N.: Automated detection of rock glaciers using deep learning and object-based image analysis. Remote sensing of environment, 250, 112033, 2020, https://doi.org/10.1016/j.rse.2020.112033.
Strozzi, T., Caduff, R., Jones, N., Barboux, C., Delaloye, R., Bodin, X., Kääb, A., Mätzler, E., and Schrott, L.: Monitoring Rock Glacier Kinematics with Synthetic Aperture Radar. Remote Sensing, 12(3), 559, 2020, https://doi.org/10.3390/rs12030559.
2019
Bertone, A., Zucca, F., Marin, C., Notarnicola, C., Cuozzo, G., Krainer, K., Mair, V., Riccardi, P., Callegari, M. and Seppi, R.: An unsupervised method to detect rock glacier activity by using Sentinel-1 SAR interferometric coherence: A regional-scale study in the Eastern European Alps. Remote Sensing, 11(14), 1711, 2019, https://doi.org/10.3390/rs11141711.
Brardinoni, F., Scotti, R., Sailer, R., and Mair, V.: Evaluating sources of uncertainty and variability in rock glacier inventories. Earth Surface Processes and Landforms, 44(12), 2450-2466, 2019, https://doi.org/10.1002/esp.4674.
Cicoira, A., Beutel, J., Faillettaz, J., & Vieli, A. (2019). Water controls the seasonal rhythm of rock glacier flow. Earth and Planetary Science Letters, 528, 115844. https://doi.org/10.1016/j.epsl.2019.115844
2018
Delaloye, R., Barboux, C., Bodin, X., Brenning, A., Hartl, L., Hu, Y., Ikeda, A., Kaufmann, V., Kellerer-Pirklbauer, A., Lambiel, C. and Liu, L.: Rock glacier inventories and kinematics: A new IPA Action Group. In: Proceedings of the 5th European Conference on Permafrost, Chamonix-Mont Blanc, France (Vol. 23, pp. 392-393), 2018.
Eriksen, H. Ø., Rouyet, L., Lauknes, T. R., Berthling, I., Isaksen, K., Hindberg, H., … & Corner, G. D. (2018). Recent acceleration of a rock glacier complex, Adjet, Norway, documented by 62 years of remote sensing observations. Geophysical Research Letters, 45(16), 8314-8323. https://doi.org/10.1029/2018GL077605